The Blog dot

Currently browsing: Ngs

Back to overview

Implementing NGS for HLA typing: preparation is the key to success

By Jon Smith

If you’ve decided to take advantage of next generation sequencing (NGS) for HLA typing, your timing couldn’t be better.  With the recent introduction of more affordable bench-top sequencers and targeted HLA sequencing panels, NGS is more accessible than ever.  Of course, integration of a new technology into a busy lab takes careful planning to avoid teething problems, so now is the time to consider the impact an NGS system will have on your lab, and what you can do to make the transition as smooth as possible.   

Read more

How to reliably get more data from less volume

By Severin Heynen

With multiple tests to perform on a tiny volume, samples are getting more precious. And as Next Generation Sequencing pushes the envelope on cost and throughput, scientists are looking for ways of reducing reagent volumes without compromising on quality. Tecan has a tip.

Read more

Harnessing the power of NGS with automated solutions for HLA sequencing

By Jon Smith

For patients in need of vital transplants, fast and accurate tissue typing can mean earlier treatment and a better chance of survival.  Next generation sequencing (NGS) is revolutionizing human leukocyte antigen (HLA) typing by providing allele-level resolution in a single high-throughput step. 

Read more

It's a match: The marriage of HLA typing and NGS is a step forward for precision medicine

By Jon Smith

They don’t take up much room in your DNA – a mere 4 megabases on the short arm of Chromosome 6 – but Human Leukocyte Antigen (HLA) genes play a defining role in whether you will develop an autoimmune disorder, fend off an infectious disease, or have an adverse reaction to potentially life-saving treatments. 

Read more

Ramping up NGS in oncology: Is sequencing tumor DNA enough? Part II

By Achim von Leoprechting

Next-generation sequencing (NGS) is poised to become a decisive tool in diagnostic, therapeutic, and prognostic applications in oncology. In the first part of this two-part series, we saw that sequencing tumor-derived DNA alone can risk incorrect diagnosis by misinterpreting somatic alterations as being tumor-specific. This pinpoints the need to sequence normal tissue in parallel to map out the somatic alterations already present in the patient, which clearly has implications for the future of NGS-based diagnosis and workflows in the clinical laboratory.

Read more

Ramping up NGS in oncology: Is sequencing tumor DNA enough? Part I

By Achim von Leoprechting

Massively parallel sequencing has rapidly become a must-have tool of the trade in molecular biology and drug discovery research. In recent years, the cost of next-generation sequencing (NGS) has declined exponentially, while throughput, accuracy, and read lengths have soared, and multiple regulatory-compliant sequencing technologies have achieved commercial success.

Read more

Country selection

appears to be your location. To view country specific information on the Tecan web site, please accept or change country below.

accept country change country select country

Tecan Cookie Policy

This site uses cookies. By continuing to browse the site, you are agreeing to our use of cookies. Disclaimer