Aqsens Health is focused on developing non-invasive screening and diagnostic tests based on enhanced time-resolved fluorescence for health monitoring and detection of serious diseases, such as cancer, where early diagnosis is vital. With an increasing workload, the company has turned to automation to allow higher throughput and rapid delivery of high quality results.
Determining if a new cosmetic product, pharmaceutical ingredient or chemical substance is harmful to humans is a key prerequisite for product safety and consumer protection. Traditionally, skin sensitization testing relied on animal models, but these approaches are expensive, time consuming and raise ethical questions, while only offering limited human relevance and accuracy. SenzaGen has developed a unique, in vitro approach to sensitization testing, combining cell biology and flow cytometry with genomics-based screening and machine learning-assisted classifications.
Cell culture is at the heart of the production process for many biopharmaceuticals, but finding the optimal conditions to maximize yield can be a complex and time-consuming process. Traditional process development relies on costly and labor-intensive set-ups, significantly limiting throughput and the range of experimental conditions that can be assessed. Scientists in Roche Pharma Research and Early Development (pRED) have adopted an alternative approach, combining single-use microbioreactors with advanced automation and analytical platforms to streamline the workflow.
Clinical diagnostics company Ambry Genetics focuses on the identification of germline mutations, detecting large deletions and duplications primarily by next generation sequencing. Automation holds the key to efficient high throughput assays, ensuring optimum productivity.
Access to human pluripotent embryonic stem cells is enabling Genea Biocells to pioneer novel therapies to treat a number of neuromuscular diseases. Drawing on almost 30 years of research heritage, the company is using its expertise to model spinal muscular atrophy and facioscapulohumeral muscular dystrophy to identify potential therapies.