empty cart | close cart

Your cart

Your cart is empty.

Get a quote close form

Tecan uses cookies to improve our website. By continuing to browse our website, you accept our cookie policy.

Tecan Journal dot

Selected category: Spark

Back to overview

Cell counting made easy

Small molecule drug discovery involves a range of functional assays that have traditionally relied on manual cell counting techniques to monitor proliferation, migration and invasion. Automated cell counting is enabling the EB House Austria to save time and free up personnel, as well as designing time-course experiments that were previously unachievable.

Read more

Biosensors light the way for drug development

The successful treatment of inflammatory diseases may lie with controlling the production of particular proteins, driving efforts to identify translational repressors for drug targeting. Scientists at the Moulder Center for Drug Discovery Research have developed luminescencebased biosensors for protein detection, supporting multiplex studies and timecourse assays for identifying and characterizing novel compounds.

Read more

Detection at the molecular level

Many common food additives and pharmaceuticals make their way directly into aquatic ecosystems. While their effects on humans are well documented, the impact on the environment and marine lifeforms is largely unknown. This has become the focus of a collaborative project involving researchers at the Karlsruhe Institute of Technology, which has adopted fluorescence polarization to explore the problem at the molecular level, screening compounds for their affinity to nuclear receptors.

Read more

More than skin deep

LMSM studies the effects of changing environmental parameters on the physiology of bacteria, and has recently began using this expertise to help the cosmetics industry. Many of these investigations involve absorbance-, luminescence- and fluorescence-based assays, requiring strict control of the temperature inside the microplate measurement chamber for reliable results.

Read more

Targeting the treatment of solid tumors

Tessa Therapeutics has developed a virus-specific T cell therapy for the treatment of solid tumors, which has shown promising results in early trials. Stringent quality control, including time-resolved fluorescence cytotoxicity assays performed on a multimode reader, is essential for this work.

Read more

Accelerating R&D through collaboration and automation

Discovering and developing new antimicrobial drugs to tackle antibiotic resistance requires an understanding of how bacteria respond and adapt to new compounds. A range of tests are needed to determine the efficacy of potential drugs, such as aggregation and adhesion/invasion assays. For SMALTIS, a biotechnology company in Besançon, France, test automation has dramatically improved throughput and data collection, freeing up research hours to concentrate on developing new experiments.

Read more

Luciferase comes to the devil’s rescue

Wild Tasmanian devils are vulnerable to a facial cancer discovered in 1996 and identified as a transmissible tumor a decade later. The contagious disease originated in northeastern Tasmania and spread throughout the country, decimating the devil population and raising the real possibility of extinction. Scientists at the Menzies Institute for Medical Research, University of Tasmania, have pioneered research into the problem – drawing upon the latest developments in human immunology and bioluminescence cytotoxicity assays – in the hope of developing a vaccine to save the island’s iconic marsupial.

Read more

Designed for flexibility, built for speed

Multidisciplinary research calls for multifunctional laboratory equipment capable of rapidly switching between applications. Staff in the Department of Biomedical Engineering at the TU Eindhoven understand that having the right instruments for your workflow can allow more users to benefit and help to accelerate research.

Read more

Vectoring in on success

Genetic modification of mammalian cells is now a routine daily activity in academic and industrial R&D laboratories around the world, with viral vectors – such as lentivirus – commonly used to create new cellular models for a wide range of applications.

Read more