Your cart is empty.
By Magali Wolff
You could say that the road to in vitro diagnostic medical devices regulation (IVDR) implementation has been rocky. We have read all of the documents, spent hours in meetings and felt our heart stop with every new announcement about the new regulations.
By Günter Weisshaar
The announcement of the In Vitro Diagnostics Regulation (IVDR) in 2017 was celebrated as an essential upgrade to in vitro diagnostic (IVD) device regulations in Europe. This article discusses the important changes, challenges, and benefits of IVDR, as well as an industry insight into how to work together to ensure IVD devices are, and continue to be, compliant.
The IVDR is the European Union’s regulatory overhaul of pre- and post-market requirements for IVD devices. It came into force in May 2017, with a five-year transition period that was initially proposed to finish on May 26, 2022. However, the COVID-19 pandemic added further strains to already tight timelines, as a result, the European Commission proposed a more progressive roll out to prevent disruption in the supply of essential healthcare products.
By Nicholas Smith
You are considering an Original Equipment Manufacturing (OEM) partner to support you in bringing your idea to market. The planned in vitro diagnostic device may require components, robotics and modules. You may need integration into an existing platform or the development of a completely new customized system. You may need to react quickly to unexpected circumstances requiring rapid changes in the throughput of your instruments. What else should you take into account when selecting an ideal OEM partner?
Every partnership has two sides and each must work together to reach success. In this case, there is the OEM partner and an OEM customer. Would any OEM partner fit with any OEM customer? There are several success factors that OEM customers and OEM partners need to consider to develop a successful partnership.
By Laura Nea
The global trend toward more stringent regulatory control of in vitro diagnostic (IVD) medical devices is sending shock waves through the industry. Now that we have passed the halfway mark in the transition to Europe’s new In Vitro Diagnostic Regulation (IVDR 2017/746), it’s crucial that diagnostics businesses critically evaluate their entire supply chain to close any gaps and ensure IVDR-compliance can be maintained throughout the device lifecycle. An important question to ask is whether outsourcing your IVD projects will help or hinder your efforts to comply and remain competitive in this shifting regulatory landscape. In the final blog of this 2-part series, we consider the advantages of partnering and the factors that are crucial for success.
By Laura Nea
Is your business IVDR-ready, or are there treacherous gaps in your strategy? This November marks the halfway point in the five-year transition to the In Vitro Diagnostic Regulation (IVDR) 2017/746—a major regulatory overhaul that calls for reclassification
and recertification of all IVD devices registered in the European Union. With its expanded scope and more stringent requirements, IVDR impacts the entire supply chain. The May 2022 transition deadline may seem a long way off, but there’s no time to lose. In this 2-part series, we help you take stock of the situation, with a special focus on how to prepare when it comes to managing OEM relationships and new partnerships.
By Claudio Bui
Getting to market quickly is essential when introducing new instrumentation into a fast-paced industry sector like genomics. When the pressure is on, rapid prototyping can be the key to quickly and efficiently building a reliable product that fulfills all the needs of your customer. In this article, we take a closer look at what prototyping involves and how you can accelerate the process to get your instrument to market faster than your competitors.
By Markus Wiggli (in collaboration with Artel)
Imagine discovering that one of your company’s core liquid handling procedures has been generating variable results from one automation platform to the next, or one lab to the next. The impact could have devastating consequences for your work, if not for your career. Fortunately, an ISO quality standard has been established to help reduce the risk of this quality management nightmare becoming a reality.
By Dr Beatrice Marg-Haufe
The COVID-19 pandemic has forced everyone to look at laboratory routines to see if they are really pandemic proof. For example, the explosive demand for high throughput genomic analysis often creates pressures upstream to process many more samples and prepare high quality DNA. The rapid shut down of non-essential workplaces and services coupled with the surge in demand for laboratory testing put immense strain on multiple aspects of normal laboratory operations such as strict rules on the need for personal protective equipment which was in limited supply and required physical distancing. Consumable stocks and reagents also dwindled as they were being used at a much faster rate and the supply chains were affected by global demand. Now that limitations of current laboratory routines have been highlighted, it’s time to consider how to make laboratories pandemic proof.
By Joe Rotter
How do you prepare for the unexpected? The COVID-19 pandemic has brought to light how challenging it is for labs and production facilities to scale up quickly in times of need. The sudden surge in demand for laboratory solutions at the very time that we are experiencing unprecedented constraints on the workforce and global supply chains is a wake-up call. This has put pressure on infrastructures in every sphere connected to the healthcare industry—from R&D and manufacturing to clinical diagnostics. Even relatively small labs and organizations have been required to rapidly shift focus and massively expand their outputs at an unprecedented rate.
By Magali Fischer
Generating reproducible, accurate ELISA data starts with reliable reagents that are highly sensitive and specific. These are often available as kits that need to be incorporated into an efficient workflow. Unfortunately, running ELISA manually involves multiple manual wash processes and pipetting steps that are time-consuming, increase the risk for human error, and lead to poor reproducibility. Automation is the best route to smoothening the workflow and increasing data reliability.
By Magali Fischer
With more than 50% of preclinical results estimated to be irreproducible, the reliability of methods, assays, and protocols is a major concern in all areas of research. Many critical assay workflows, such as those for ELISA tests, are prone to error, even when using a high quality kit. While ELISA kits provide a solid basis to generate reliable data, troubleshooting the complete assay workflow is the first step toward pinpointing additional sources of variability and error that must be addressed in order to increase reproducibility and confident decision making.
By Nicholas Smith
It can be easy to dismiss outsourcing lab automation in favour of seemingly less expensive do-it-yourself (DIY) solutions. However, outsourcing is more cost effective than it might seem. By taking advantage of the expertise of Original Equipment Manufacturing (OEM) partners, who can also offer a variety of flexible financing options, outsourcing could well be the right solution for your business. Here are some of the main ways in which OEM partners can make your automation project more cost-effective.
By Claudio Bui
Lab automation and liquid handling solutions are evolving rapidly, shaped by many of the same forces and disruptive technologies that define the fourth industrial revolution. Alongside Industry 4.0, you could say that the era of Liquid Handling 4.0 has arrived. In today’s fast-paced environment where engineers need to develop and adapt analytical platforms rapidly to address new markets and ever-changing applications, the choice of core robotics architecture and components can be crucial for success. Here are some important questions to ask when selecting OEM components and robotic platforms for automated liquid handling.
By David Wold
Today’s hematology labs are faced with escalating demands to deliver robust and accurate blood test results quickly. At the heart of automated diagnostic systems for blood analysis are liquid handling pumps, which must deliver precise and accurate results every time. As well as being reliable, they must also be affordable and easy to maintain. Unfortunately, not all pumps deliver to these exacting standards. What are the most important factors for an engineer to consider when selecting a pump to meet the stringent performance required for a hematology automation system?
By David Wold
From the perspective of a lab automation systems engineer, specifying the optimal liquid handling pump and associated fluidic components is often central to the design process, especially for products that will be used in a clinical lab or other highly regulated environments. What questions should you ask in order to select a pump that can handle all of your system’s intended applications? Here’s what our liquid handling experts from Tecan's OEM Partnering team have to say.
By Hal Wehrenberg
All automation is controlled by software and understanding the differences between options can be complicated. Underestimating the impact of software may set back your budget or critical timelines.
By Severin Heynen
Improving lab procurement processes involves more than just putting e-procurement or lab management software in place. In most cases accessing, managing and analyzing the data that you use to support purchase decisions and feed into e-procurement tools is still a big challenge. In previous articles, we explored the value of automated collection of usage data from lab instruments and robotics. What capabilities and features should you look for when deciding which tools will best support your needs? Here are our top picks.
By Claudio Bui
When you design a complex laboratory automation system or device, every OEM liquid handling component that you integrate into it should be reliable, dependable and expected to perform to the highest industry standards. Subpar quality is not an option. If the intended use of the system includes critical tests for clinical diagnostic purposes, the consequences of failure or poor performance of liquid handling components could be more costly than you bargained for, including irreparable damage to your company’s reputation and even worse – it could pose serious risks to patients’ health. Integrating components into your system that are reliable and have a durable design should be an essential consideration.
By Hal Wehrenberg
Congratulations. It took you quite some time and effort to convince your management or institution on the value of investing in automating your experimental or clinical workflow. The applications were submitted, the presentations were made and the wheeling and dealing to secure the budget resulted in you and your team landing the investment. You've arrived. Now all you have to do is choose the robot and get it up and running.
By Claudio Bui
The demand for advanced medical and diagnostic testing continues to accelerate. Laboratories, hospitals, and emerging consumer genomics companies are demanding quicker test sequences resulting in the design and development of new innovative and responsive test protocols. These new tests include the handling of a wide array of fluids. The measurement, monitoring, mixing, and controlling of solvents, salts, detergents, acids, bases, reagents, and additives is critical in all liquid handling lab environments.
By Michelle Aichele
Are you guilty of making decisions without the data to back them up? In today’s busy labs, mission-critical decisions about laboratory equipment purchases, service contract renewals, consumables spending, and staffing are often made on the basis of incomplete information. Having a clear picture of instrument usage and burn rates of associated reagents and consumables can help you uncover new ways to cut costs and improve performance in the laboratory. In the previous article we highlighted how crucial it can be for labs to monitor instrument utilization data. Now let’s consider more specifically what you can learn from analyzing all this data.
By Michelle Aichele
As we move into the 2019 budget cycle with signs of a global economic slowdown on the horizon, laboratory administrators are no doubt feeling the heat. A combination of poor forecasting, inefficient use of resources, and a sudden economic downturn could create the perfect storm to capsize operations. Despite these high stakes, critical decisions about budget allocation, expensive equipment purchases, workflow optimization and cost-cutting strategies are often made based on incomplete information or even pure guesswork about laboratory asset utilization.
By Hal Wehrenberg
Cost-efficient application of advanced technologies such as next generation sequencing (NGS) and liquid-chromatography/mass spectrometry (LC-MS) demands sophisticated automation solutions that can handle complex protocols and evolving applications. However, if you are working in a clinical lab or other highly regulated environment then increasing instrument flexibility can make meeting compliance standards a real challenge. Before you buy, here are 5 key considerations to ensure you get the best of both worlds in terms of flexible functionality and compliance with your automated liquid handling system.
By Claudio Bui
When introducing a new product to the automated liquid handling market, getting there first with high quality and reliable hardware is vital to capturing and maintaining early market leadership. How can you gain that advantage when you have to balance requirements for customized high-performance robotics against an accelerated product launch?
By Alexandra Sommer
Rapid advances in molecular diagnostics, including the application of advanced methods such as next generation sequencing (NGS) in clinical diagnostics, are revolutionizing healthcare. But this puts a lot of pressure on clinical labs to develop, optimize, validate and gain regulatory approval of high throughput assays. The secret to successful automation in the clinical regulatory environment lies in anticipating potential pitfalls.
By Kevin Moore
The repeatability of biomedical research has become a major issue, and the ability to achieve reproducible research results can only be as good as the liquid handling performance. Automation has become a given step in the drive to generate reproducible data so how well can automated liquid handling perform in, for example, genomics applications?
By Claudio Bui
When designing products that include automated liquid handling, how do you decide when and what to buy from an OEM components supplier vs. designing in-house? How do you then decide who will be the right partner for you? A well-planned “make versus buy” analysis and OEM-components partnering strategy can significantly augment the expertise of your own team. It can free up internal resources for other projects, reduce long-term costs, and ultimately help get your products to market faster.
By Nicholas Smith
Cognitive computing and artificial intelligence have the power to save us from drowning in the vast and growing sea of data needed for precision medicine, but what will it take to achieve a timely return on investment? Experts from multiple disciplines will gather to share their perspectives on this challenging problem at the upcoming Tecan Symposium in Salt Lake City on November 14th.
By Jason Meredith
In an increasingly regulated industry, clinical laboratories and manufacturers of in vitro diagnostic (IVD) tests are feeling the pressure to ensure regulatory compliance, while at the same time striving to increase productivity and bring innovative technologies on stream. At times, this balancing act can seem like a losing proposition.
By Jason Meredith
Hospitals are becoming the new centers of innovation for novel clinical diagnostic tests. While this is enabling more sophisticated and personalized approaches to disease prevention, early diagnosis, and targeted treatment, it also has the potential to create major headaches for regulatory management of clinical labs.
By Severin Heynen
As we have seen in the previous posts in this series, developing validated analytical methods becomes more cost- and time-effective when solutions with guaranteed compatibility are incorporated into the analytical system.
By Florence Collins
A long-term clinical lab study lasting over 10 years showed that more than 60% of all mistakes in the stat lab (the lab that receives high priority samples) can be attributed to the pre-analytical phase. This figure has not changed much from 1997 to 2007,1, 2 despite advances in the technology.
By Severin Heynen
Well-documented reliable, accurate data that meets regulatory demands is crucial for success The key is to develop robust analytical methods based on instruments and other components that perform well together to ease the way forward through Installation Qualification and Operational Qualification (IQ/OQ) and method validation.
By Nicholas Smith
If the U.S. Food and Drug Administration (FDA) goes forward with its proposed guidance to regulate laboratory developed tests (LDTs) in the same way it does manufacturer-derived tests, then much is going to change for clinical laboratories, their industry partners that produce the reagents, assays, and instruments needed to perform these tests, and the clinicians and patients who have come to rely on LDTs to fill the gap in diagnostic testing.
By Florence Collins
Scinomix, Inc., founded in 2001, creates customized solutions for labeling tubes, vials and plates in many life science applications. We took the chance to ask Nigel Malterer (CEO) and Jonathan King (Automation Software Engineer) at Scinomix about how automated barcode labeling solutions are helping to improve productivity, reduce errors and costs, and increase control over lab workflows.
By Nicholas Smith
The intention by the U.S. Food and Drug Administration (FDA) to issue a new guidance that would bring oversight of laboratory developed tests (LDTs) directly under FDA regulatory control, instead of the current paradigm in which LDTs are regulated by FDA's Clinical Laboratory Improvement Amendments (CLIA), is creating much uncertainty and not a little distress. What would this significant change mean for laboratories that already rely on LDTs, are improving existing tests and actively developing new ones?
By Nicholas Smith
Uncertainty and concern best describe the prevailing feelings of many researchers, clinicians, and companies that develop, manufacture, and implement laboratory developed tests (LDTs). The reason for all this uncertainty is the U.S. Food and Drug Administration's (FDA) stated plan to issue a new guidance that would change the paradigm for regulating LDTs.
By Agnieszka Sitarska
Whatever you are using automated liquid handling for, be it drug development, next generation sequencing, assay development or basic research with cell-based assays, getting correct results is crucial to reaching your goals, quickly and efficiently. And you also need to prove the validity of your data for regulatory compliance. The question is, how can this be achieved with little effort?
By Florence Collins
Barcodes play a central role in minimizing the risk of error in lab automation by providing secure tracking of components throughout the workflow. Barcode-guided lab automation can be simple and cost-effective, with significant paybacks thanks to productivity increases.
By Kevin Moore
Dana Campbell, Field Support Specialist, Artel, considers the importance of quality control (QC) from an applications perspective.
By Martin Braendle
Robotics and automation have become essential to the future plans of drug discovery and clinical diagnostic companies. Executives are looking to increase productivity and reduce costs, and automation fits the bill in every respect.
By Nicholas Smith
Today there is much discussion on the Food and Drug Administration (FDA) regulation and oversight of Laboratory Developed Tests (LDTs). The debate features numerous topics including the necessity for regulation, whether the FDA has the authority to regulate, the feasibility of the proposed regulations, and the effect on innovation if indeed regulation is put into place.