Tecan uses cookies to improve our website. By continuing to browse our website, you accept our cookie policy.


The Blog

Selected category: lab automation

Back to overview

Mind the gap: How to navigate the IVDD-IVDR transition – Part 2

By Laura Nea

The global trend toward more stringent regulatory control of in vitro diagnostic (IVD) medical devices is sending shock waves through the industry. Now that we have passed the halfway mark in the transition to Europe’s new In Vitro Diagnostic Regulation (IVDR 2017/746), it’s crucial that diagnostics businesses critically evaluate their entire supply chain to close any gaps and ensure IVDR-compliance can be maintained throughout the device lifecycle. An important question to ask is whether outsourcing your IVD projects will help or hinder your efforts to comply and remain competitive in this shifting regulatory landscape. In the final blog of this 2-part series, we consider the advantages of partnering and the factors that are crucial for success.

Read more

Mind the gap: How to navigate the IVDD-IVDR transition – Part 1

By Laura Nea

Is your business IVDR-ready, or are there treacherous gaps in your strategy? This November marks the halfway point in the five-year transition to the In Vitro Diagnostic Regulation (IVDR) 2017/746—a major regulatory overhaul that calls for reclassification and recertification of all IVD devices registered in the European Union. With its expanded scope and more stringent requirements, IVDR impacts the entire supply chain. The May 2022 transition deadline may seem a long way off, but there’s no time to lose. In this 2-part series, we help you take stock of the situation, with a special focus on how to prepare when it comes to managing OEM relationships and new partnerships.

Read more

Why developing IVD automation software in-house backfires

By Andreas Schmitt

When you have a diagnostic lab instrument and want to make the move to automation, creating high-quality, reliable and intuitive robot control software that, optimizes throughput, provides process safeguards, and analyzes and presents results, is vital.

Read more

ISO Standards for automated liquid handling systems – what labs need to know

By Markus Wiggli (in collaboration with Artel)

Imagine discovering that one of your company’s core liquid handling procedures has been generating variable results from one automation platform to the next, or one lab to the next. The impact could have devastating consequences for your work, if not for your career. Fortunately, an ISO quality standard has been established to help reduce the risk of this quality management nightmare becoming a reality.

Read more

Seven elements for successful IVD instrument development with your OEM partner

By Nicholas Smith 

You have made the decision to enter into the development of an IVD medical device for your customers. You have learned that inviting an OEM partner into your project could be beneficial to reduce risks and fill expertise or skill gaps, but you are still hesitant. What are the key elements that you should consider to ensure the success of the collaboration?

Read more

Things to consider before introducing lab automation to in vitro diagnostics

By Nicholas Smith 

If you’re thinking about automating your in vitro diagnostic (IVD) product it can be hard to decide whether to outsource to an Original Equipment Manufacturing (OEM) partner or keep the development in-house. While the familiarity of a DIY solution might be appealing there are a number of hidden pitfalls that could hamper your progress.

Finding the right OEM partner for your IVD medical device could give you the edge by avoiding these pitfalls and giving your project a speed and performance boost needed to help you get to market faster.

Read more

For data reproducibility: automation of ELISA test kit protocols wins

By Magali Fischer

Automating robust assays is a way forward

Generating reproducible, accurate ELISA data starts with reliable reagents that are highly sensitive and specific. These are often available as kits that need to be incorporated into an efficient workflow. Unfortunately, running ELISA manually involves multiple manual wash processes and pipetting steps that are time-consuming, increase the risk for human error, and lead to poor reproducibility. Automation is the best route to smoothening the workflow and increasing data reliability.

Read more

The ups and downs of DIY lab automation

By Nicholas Smith

With open source software and high quality off-the-shelf components, do-it-yourself (DIY) lab automation solutions are trending. While developing lab automation in-house might seem attractive at first glance, the road is littered with hidden pitfalls that can derail internal projects. Finding an Original Equipment Manufacturing (OEM) partner can be a cost-effective way to circumvent the pitfalls and mitigate risks by working with a trusted automation expert.

Read more

LC-MS/MS immunosuppressant drug monitoring: from promise to reality

By Manuel Bauer 

Advances in the treatment of disease, such as the many different types of cancer and cardiac diseases, mean that organ and bone marrow transplantation is on the rise.1 This rise has in turn generated an increased need for accurate immunosuppressant drug (ISD) monitoring. This 3-part blog series will walk you through the challenges of adapting gold standard mass spec methods such as LC-MS/MS for ISD monitoring, and explore ways to avoid the associated pitfalls.

Read more

A 3-point check to simplify liquid handling syringe pump maintenance

By Maria Liwanag

The syringe pump is the workhorse of any automated liquid handling instrument. A single syringe pump may complete one cycle every second, and as many as 4 million cycles in its lifetime. Keeping your pump syringes and components in top condition will allow them to run smoothly and deliver their best performance. Over time, syringes may start to wear, and therefore volumetric and positional precision and accuracy are likely to decline. Maintenance and replacement will restore its performance.

Read more

How pressure sensors are empowering liquid handling monitoring and diagnostics

By David Wold 

The impact of pump pressure sensors on your automated liquid handling pump performance is often underestimated and underappreciated. The saying, “You don't know what you’ve got ‘till it's gone” applies to many things in life – including fluidic pumps. When device sensors are doing their jobs, the end-user will never know, but when the sensor feature fails to perform, the consequences can be costly and catastrophic. Today’s smart technologies empower pressure sensor functionality more than ever. Why are pump pressure sensors essential for automated liquid handling systems? What benefits do they offer? How do they increase functionality and address process security risks?

Read more

The top 5 pitfalls of custom automation

By Hal Wehrenberg

What happens when lab automation projects are unsuccessful? One out-take is learning what creates a stronger process and methodology. That's exactly what we found at Tecan after working with several hundred customers on lab automation for multiple projects. This presentation reveals the top 5 pitfalls of custom automation based on real experience.

Read more

Pumping up genomics: how to engineer better NGS sample prep systems

By David Wold

With high-throughput genomics impacting every corner of biology, the demand for more efficient Next-generation sequencing (NGS) workflows is growing rapidly. Automating the process of NGS sample preparation is crucial to avoid inaccuracies due to human error, bottlenecks that delay sequencing results, and the additional expense of re-running sequences. What are the most important factors for an engineer to consider when selecting a pump to meet the stringent performance required for an automated NGS library preparation system?

Read more

Pumping blood: choosing a liquid handling pump for hematology applications

By David Wold

Today’s hematology labs are faced with escalating demands to deliver robust and accurate blood test results quickly. At the heart of automated diagnostic systems for blood analysis are liquid handling pumps, which must deliver precise and accurate results every time. As well as being reliable, they must also be affordable and easy to maintain. Unfortunately, not all pumps deliver to these exacting standards. What are the most important factors for an engineer to consider when selecting a pump to meet the stringent performance required for a hematology automation system?

Read more

Liquid handling pump selection: a guide for lab automation engineers

By David Wold

From the perspective of a lab automation systems engineer, specifying the optimal liquid handling pump and associated fluidic components is often central to the design process, especially for products that will be used in a clinical lab or other highly regulated environments. What questions should you ask in order to select a pump that can handle all of your system’s intended applications? Here’s what our liquid handling experts from Tecan's OEM Partnering team have to say.

Read more

Automated metabolic analysis in photodynamic tumor therapy

By Siegfried Sasshofer

Photodynamic Therapy (PDT) is being increasingly recognized as having potential for the treatment of tumors, especially dermatological. But using conventional manual methods of recording the metabolic processes that occur as a result of adding the photosensitizer to target cells has major limitations.

Read more

The new standards for phenotypic screening

By Simon Fogarty

If you’ve decided you need to incorporate phenotypic screening into your discovery program and you know that one of the new generation of automation platforms is the way forward, what factors should influence your choice?

Automation, miniaturization, cell based assays and 3D cell culture 

Read more

Automating your anatomical pathology lab: how to get there faster

By Yves Wurmitzer

Anatomical pathology labs face ever-increasing pressure to meet demands for enhanced throughput, improved quality and cost savings. Additionally as we saw in the previous article in this series, anatomical pathology has to adapt to disruptive new methods that replace or enhance traditional ones and automation that will play a key role in reducing waste, error, and hands-on time. Employing automation solutions built for traditional methods can result in compromises in compatibility, throughput, and quality, which mean that novel solutions may be required. In this case, it may be time to consider partnering to develop the automated pathology system that delivers the performance a modern anatomical pathology lab needs.

Read more

Molecular diagnostics – a closer look at sample to answer

By Nicolas Smith

How to overcome challenges like inefficient workflow and a lack of suitably trained staff is the question increasingly facing laboratories in markets ranging from diagnostics to food and beverages. Could sample-to-answer systems be the answer?

Read more

Seeking powerful analytics to improve lab procurement? Here’s what to look for

By Severin Heynen

Improving lab procurement processes involves more than just putting e-procurement or lab management software in place. In most cases accessing, managing and analyzing the data that you use to support purchase decisions and feed into e-procurement tools is still a big challenge. In previous articles, we explored the value of automated collection of usage data from lab instruments and robotics. What capabilities and features should you look for when deciding which tools will best support your needs? Here are our top picks.

Read more

Six benefits to implementing LC-MS sample prep automation

By Dr Manuel Bauer

Rohit Shroff provides insight from customer success stories on the benefits of automation in the clinical laboratory. Specifically, he answers the question “what can automation do for me” by illustration of the impact that these solutions have every day ... showing how sample prep automation has overcome workflow bottlenecks in the clinical LC-MS lab with real world tangible results. He shares multiple success stories of labs improving their client services by adopting automation to address the hurdles of productivity, implementation speed, compliance, reproducibility, efficiency, and employee satisfaction and retention.

Read more

How to secure long-term performance of OEM components for automated liquid handling

By Claudio Bui

When you design a complex laboratory automation system or device, every OEM liquid handling component that you integrate into it should be reliable, dependable and expected to perform to the highest industry standards.  Subpar quality is not an option. If the intended use of the system includes critical tests for clinical diagnostic purposes, the consequences of failure or poor performance of liquid handling components could be more costly than you bargained for, including irreparable damage to your company’s reputation and even worse – it could pose serious risks to patients’ health. Integrating components into your system that are reliable and have a durable design should be an essential consideration.

Read more

Automating liquid sample preparation workflow optimizes your clinical LC-MS investment

By Manuel Bauer

So you’ve made the investment in liquid chromatography mass spectrometry (LC-MS) in your clinical/diagnostics laboratory and now you need to get it up and running…adding value to the lab and generating a return. The job will certainly include moving from manual to automated sample preparation methods. This can seem an overwhelming task, especially when it involves solid phase extraction (SPE). Sean Orlowicz, Manager, PhenoLogix, offers guidance on a collaborative approach for application support and sample preparation method development.

Read more

11 key points to install and efficiently initiate a new automated assay system in your laboratory

By Hal Wehrenberg

Congratulations. It took you quite some time and effort to convince your management or institution on the value of investing in automating your experimental or clinical workflow. The applications were submitted, the presentations were made and the wheeling and dealing to secure the budget resulted in you and your team landing the investment. You've arrived. Now all you have to do is choose the robot and get it up and running.

Read more

Six tips to help match your liquid handling components with chemical compatibility

By Claudio Bui

The demand for advanced medical and diagnostic testing continues to accelerate. Laboratories, hospitals, and emerging consumer genomics companies are demanding quicker test sequences resulting in the design and development of new innovative and responsive test protocols. These new tests include the handling of a wide array of fluids. The measurement, monitoring, mixing, and controlling of solvents, salts, detergents, acids, bases, reagents, and additives is critical in all liquid handling lab environments.

Read more

Adapt or perish? Anatomical pathology labs at a tipping point

By Yves Wurmitzer



The anatomical pathology – or histopathology – services sector is projected to grow, but histopathology labs the world over are struggling in the face of shortages in trained pathologists, increasing regulatory pressure, changing reimbursement policies, and shifting paradigms in healthcare. Modernization of this highly conservative field is imperative. What are the key drivers of change in the industry, and how can anatomical pathology labs prepare to embrace the future? Will automation and digitalization offer a solution?



Read more

Five ways instrument utilization data can boost your lab’s efficiency

By Michelle Aichele



Are you guilty of making decisions without the data to back them up? In today’s busy labs, mission-critical decisions about laboratory equipment purchases, service contract renewals, consumables spending, and staffing are often made on the basis of incomplete information. Having a clear picture of instrument usage and burn rates of associated reagents and consumables can help you uncover new ways to cut costs and improve performance in the laboratory. In the previous article we highlighted how crucial it can be for labs to monitor instrument utilization data. Now let’s consider more specifically what you can learn from analyzing all this data.


Read more

Is what you don’t know costing you? Why instrument utilization data could be your lab’s biggest asset

By Michelle Aichele

As we move into the 2019 budget cycle with signs of a global economic slowdown on the horizon, laboratory administrators are no doubt feeling the heat. A combination of poor forecasting, inefficient use of resources, and a sudden economic downturn could create the perfect storm to capsize operations. Despite these high stakes, critical decisions about budget allocation, expensive equipment purchases, workflow optimization and cost-cutting strategies are often made based on incomplete information or even pure guesswork about laboratory asset utilization.

Read more

Four common pitfalls to avoid when choosing laboratory automation solutions

By Kevin Moore

When looking to maximize productivity in life science R&D, drug discovery, clinical studies or clinical diagnostics, laboratory automation is a crucial element. You may already have identified great solutions to automate individual applications and steps in your workflows, but unless these systems work together harmoniously, your lab’s overall productivity could still fall short of the mark. Whether your application area involves clinical diagnostics, genomics, cell biology, drug discovery, protein purification or something else altogether, we’ve identified some of the most common roadblocks to successful automation.

Read more

Get a competitive edge in clinical markets with modular OEM solutions

By Markus Vogler

The last decade has seen dramatic changes in the world of diagnostics, with experts even referring to the present time as the start of the fourth industrial revolution. Digitalization, along with other technological advances such as the increased use of automation and robotics, machine learning, artificial intelligence and cloud computing, is impacting every industry from manufacturing to pharmaceutical biotechnology. These technologies, as well as breakthrough research in various fields such as gene editing, stem cell technology and regenerative medicine, are having a huge impact on the clinical diagnostics industry.

Read more

The next giant in genome sequencing? China

By Nicholas Smith


As  sequencing grows significantly in China, how are Chinese home-grown companies making the most of it?



In December 2017, the UK and China announced a joint initiative to advance collaboration in science and innovation¹. The first bilateral science and innovation strategy of its kind to be developed by China jointly with another country, the UK-China Joint Strategy for Science, Technology and Innovation Cooperation builds on existing collaborations dating back to 2014, and represents yet another step change in China’s efforts to grow their leadership in healthcare markets. On the back of initiatives such as this, China’s home-grown companies are forging new partnerships internationally, and are well positioned to flourish as a result.

Read more

Embracing change in clinical labs and in vitro diagnostics: 6 lessons from the automotive industry

By Markus Vogler

Similar to the highly competitive automobile industry, clinical laboratories and manufacturers servicing the clinical diagnostics and life science markets, are always under pressure to increase quality and reliability. Likewise, they must at the same time cut costs and bring new products to market in a climate of rapid global change and increasing regulatory pressures. Specialist car manufacturers are leading the way with innovative new approaches to cope with the challenges. Those who are successful have learned how to be more adaptable and how to get their innovative products to market faster.

Read more

Four disruptive trends that are shaping the future of clinical diagnostics

By Markus Vogler

The world of diagnostics, like so many other industries, is entering what leaders in the World Economic Forum are calling the fourth industrial revolution. Digitalization, robotization and automation have given rise to highly flexible “smart factories” as well as laboratories that can handle both routine/high volume analyses and highly customized analyses at competitive prices. This is coupled with an ongoing integration of the entire value chain – from subcontractor to customer.

Read more

Six questions to ask before choosing liquid handling robotic components for faster time to market

By Claudio Bui

When introducing a new product to the automated liquid handling market, getting there first with high quality and reliable hardware is vital to capturing and maintaining early market leadership. How can you gain that advantage when you have to balance requirements for customized high-performance robotics against an accelerated product launch?

Read more

Creating a cost-effective walkaway automated workflow is a breeze with these top tips

By Siegfried Sasshofer

An automated liquid handler for sample processing can significantly increase your productivity. It becomes even more powerful when integrated with other workflow components to enable you to create fully automated walkaway processing for applications such as sample and library prep for next generation sequencing (NGS), or cell-based assays. The question is how to choose components and integrate them.

Read more

Crisis of confidence: How reproducible is your research?

By Kevin Moore

Data driven decision-making depends on generating reliable data in a timely fashion. But the reproducibility of biomedical research results, or rather lack of it, has become a big issue. A recent Nature survey¹ revealed a “reproducibility crisis” in the research community, with 70% of respondents having failed to reproduce the work of other researchers, and over half even failing to reproduce their own results. 

Read more

Solving the top four automation challenges of the discovery lab

By Simon Fogarty

At Tecan, we’ve been solving lab automation problems for over thirty years. In planning for SLAS, I was asked an interesting question: what are the main automation challenges that people face in drug discovery and screening? I can break them down into categories, and illustrate them with the most common requests that we get.

Read more

Everything Your Boss Wants to Know About Liquid Handling

By Bronwen Forster

What does the boss want to achieve by automating a process? The priority is enhanced data quality, followed closely by greater productivity, protecting your investment, and saving time and money. Tecan's Fluent® 780 can meet these critical demands.

Read more

Automating rapid, parallel high throughput screening to accelerate compound optimization

SLAS2017 Presentation by Dr. Bernhard Ellinger, Fraunhofer Institute for Molecular Biology and Applied Ecology, IME, Hamburg, Germany

Fraunhofer IME has had very good success using the Tecan Fluent®  to perform fully automated screening of smaller compound batches rapidly and accurately, in parallel against multiple analytes and with multiple readouts.

Read more

Minimizing Data Variability Caused by Your Microplate Reader

SLAS2017 Presentation by Siegfried Sasshofer, Product Manager, Tecan

The ability to reduce data variability can help greatly increase your confidence in your results. Statistically significant experimental results may not actually be achieved if you review your data and find the margin of error is too high. What do scientists typically do?

Read more

How automated test tube barcoding adds reliability and stops unnecessary errors

By Florence Collins

Scinomix, Inc., founded in 2001, creates customized solutions for labeling tubes, vials and plates in many life science applications. We took the chance to ask Nigel Malterer (CEO) and Jonathan King (Automation Software Engineer) at Scinomix about how automated barcode labeling solutions are helping to improve productivity, reduce errors and costs, and increase control over lab workflows.

Read more

Standardized verification of pipetting performance is key to efficiency and regulatory compliance

By Agnieszka Sitarska

Whatever you are using automated liquid handling for, be it drug development, next generation sequencing, assay development or basic research with cell-based assays, getting correct results is crucial to reaching your goals, quickly and efficiently. And you also need to prove the validity of your data for regulatory compliance. The question is, how can this be achieved with little effort?

Read more

How to make the right choice for barcoding sample tubes

By Florence Collins

Barcodes play a central role in minimizing the risk of error in lab automation by providing secure tracking of components throughout the workflow. Barcode-guided lab automation can be simple and cost-effective, with significant paybacks thanks to productivity increases. 

Read more

Tecan delivers sterile tips to your lab bench

By Severin Heynen

As we have learned in previous posts in this series, only pipette tips marked ‘sterile’ are guaranteed with a sterility assurance level (SAL) of 10-6. Pipette tips labeled as ‘Pre-sterile’ do not give such sterility assurances.

Read more

Intelligent robot for colony picking and complete MALDI target preparation

By Kevin Trümpi

Today’s automated microbiological lab uses matrix-assisted laser desorption/ionization (MALDI) for quick, effective and cost saving identification.

Read more

Automated mass spec immunoassay workflow

By Agnieszka Sitarska

The mass spec immunoassay (MSIA) workflow was developed to provide a simple, automated process for purification of targeted analytes for downstream detection using multiple analytical techniques, such as mass spectrometry.

Read more

Automation in the LC-MS lab

By Vince Ahlheit

Vince Ahlheit, Senior Application Scientist, Tecan, provides insight on the benefits of automation in the clinical laboratory.

Read more

Agrigenomics: Tools for plant and animal breeding, fish and fowl

By Enrique Neumann

The term genomics might at first lead you to think of the human genome and the new micro-industry subsectors it has spawned, from prenatal genetic screening for heritable diseases (and one day perhaps to select for "desirable" traits) to companion diagnostics for personalized medicine, and nutraceuticals targeted to correct imbalances in the gut microbiome.Those same types of genomic applications and many, many more can translate directly to the plant and animal world, in which agrigenomic technology is transforming traditional approaches to breeding of commercial species and monitoring and protection of wild populations.

Read more

How to become fluent in compound management

By Kevin Moore

With years of experience in lab automation, Wolfgang Jörg at Boehringer Ingelheim needed to find a new automation solution for a colleague working with compound management. Presenting at SLAS 2016, Wolfgang said, “We decided to test Fluent® 780. Tecan loaned us the system for free to test for six months providing we agreed to purchase if the system met our expectations.” With its high throughput, flexibility and accuracy, the system exceeded their expectations and has become a critical component in their high throughput compound management solution.

Read more

Counting cells is a waste of time

By Siegfried Sasshofer

The hemocytometer has been around for 140 years. It’s an easy, reliable, and trusty tool for all kinds of cell counting applications. It’s beautiful and simple. But measuring the well-being of your cells one click at a time is slow and tedious, and can be near impossible for adherent cells. Shouldn’t you be doing something else with your time?

Read more

Cell counting by the numbers

By Michael Fejtl

“When you can measure what you are speaking about, and express it in numbers, you know something about it.” Lord Kelvin knew that. To be confident in your results, to quickly move your studies forward, and to be the first to publish your conclusions, you need to know that your numbers are right. The proof you need lies in reproducibility, and reproducibility in any cell-based assay starts with accurate cell counts.

Read more